The functions of the brain depend on the ability of neurons to transmit electrochemical signals to other cells, and their ability to respond appropriately to electrochemical signals received from other cells. The electrical properties of neurons are controlled by a wide variety of biochemical and metabolic processes, most notably the interactions between neurotransmitters and receptors that take place at synapses.
Neurotransmitters and receptors
Neurotransmitters are chemicals that are released at synapses when an action potential activates them—neurotransmitters attach themselves to receptor molecules on the membrane of the synapse's target cell, and thereby alter the electrical or chemical properties of the receptor molecules. With few exceptions, each neuron in the brain releases the same chemical neurotransmitter, or combination of neurotransmitters, at all the synaptic connections it makes with other neurons; this rule is known as Dale's principle. Thus, a neuron can be characterized by the neurotransmitters that it releases. The great majority of psychoactive drugs exert their effects by altering specific neurotransmitter systems. This applies to drugs such as marijuana, nicotine, heroin, cocaine, alcohol, fluoxetine,chlorpromazine, and many others.
The two neurotransmitters that are used most widely in the vertebrate brain are glutamate, which almost always exerts excitatory effects on target neurons, and gamma-aminobutyric acid (GABA), which is almost always inhibitory. Neurons using these transmitters can be found in nearly every part of the brain.Because of their ubiquity, drugs that act on glutamate or GABA tend to have broad and powerful effects. Some general anesthetics act by reducing the effects of glutamate; most tranquilizers exert their sedative effects by enhancing the effects of GABA.
There are dozens of other chemical neurotransmitters that are used in more limited areas of the brain, often areas dedicated to a particular function. Serotonin, for example—the primary target of antidepressant drugs and many dietary aids—comes exclusively from a small brainstem area called the Raphe nuclei. Norepinephrine, which is involved in arousal, comes exclusively from a nearby small area called the locus coeruleus.Other neurotransmitters such as acetylcholine and dopamine have multiple sources in the brain, but are not as ubiquitously distributed as glutamate and GABA.
Electrical activity
As a side effect of the electrochemical processes used by neurons for signaling, brain tissue generates electric fields when it is active. When large numbers of neurons show synchronized activity, the electric fields that they generate can be large enough to detect outside the skull, using electroencephalography (EEG) or magnetoencephalography(MEG). EEG recordings, along with recordings made from electrodes implanted inside the brains of animals such as rats, show that the brain of a living animal is constantly active, even during sleep. Each part of the brain shows a mixture of rhythmic and nonrhythmic activity, which may vary according to behavioral state. In mammals, the cerebral cortex tends to show large slow delta waves during sleep, faster alpha waves when the animal is awake but inattentive, and chaotic-looking irregular activity when the animal is actively engaged in a task. During an epileptic seizure, the brain's inhibitory control mechanisms fail to function and electrical activity rises to pathological levels, producing EEG traces that show large wave and spike patterns not seen in a healthy brain. Relating these population-level patterns to the computational functions of individual neurons is a major focus of current research inneurophysiology.
Metabolism
All vertebrates have a blood–brain barrier that allows metabolism inside the brain to operate differently from metabolism in other parts of the body. Glial cells play a major role in brain metabolism, by controlling the chemical composition of the fluid that surrounds neurons, including levels of ions and nutrients.
Brain tissue consumes a large amount of energy in proportion to its volume, so large brains place severe metabolic demands on animals. The need to limit body weight in order, for example, to fly, has apparently led to selection for a reduction of brain size in some species, such as bats. Most of the brain's energy consumption goes into sustaining the electric charge (membrane potential) of neurons.Most vertebrate species devote between 2% and 8% of basal metabolism to the brain. In primates, however, the fraction is much higher—in humans it rises to 20–25%. The energy consumption of the brain does not vary greatly over time, but active regions of the cerebral cortex consume somewhat more energy than inactive regions; this forms the basis for the functional brain imaging methods PET, fMRI. and NIRS. In humans and many other species, the brain gets most of its energy from oxygen-dependent metabolism of glucose (i.e., blood sugar).In some species, though, alternative sources of energy may be used, including lactate, ketones, amino acids, glycogen, and possibly lipids.
http://en.wikipedia.org/
ไม่มีความคิดเห็น:
แสดงความคิดเห็น